Proces o przyrostach stacjonarnych
Proces o przyrostach stacjonarnych – taki proces stochastyczny, w którym rozkład przyrostów (czyli różnic wartości zmiennej losowej w różnych momentach) zależy tylko od długości przedziału czasowego, a nie od jego położenia na osi czasu[1]. Przykładem takiego procesu jest proces Wienera (ruchy Browna), gdzie przyrosty są nie tylko stacjonarne, ale również niezależne i mają rozkład normalny.
Przypisy
- ↑ Wstęp do analizy stochastycznej – 1. Procesy stochastyczne. Proces Wienera – MIM UW [online], mst.mimuw.edu.pl [dostęp 2024-09-24].