Twierdzenie Poissona dostarcza dobrego przybliżenia uzyskania konkretnej liczby sukcesów w schemacie Bernoulliego w przypadku, gdy prawdopodobieństwo sukcesu jest małe oraz iloczyn prawdopodobieństwa sukcesu i liczby prób dąży do pewnej stałej.
Twierdzenie
Niech
będzie ciągiem zmiennych losowych o rozkładach dwumianowych
Wówczas jeżeli

to

lub równoważnie

Dowód
Z definicji rozkładu dwumianowego dostajemy, że

Niech
Wówczas
Mamy zatem
[1].
Komentarz
Twierdzenie Poissona podobnie jak centralne twierdzenie graniczne służy do opisywania sum niezależnych zmiennych losowych. Różnica między tymi twierdzeniami polega na tym, że centralne twierdzenie graniczne mówi nam o sytuacjach, w których prawdopodobieństwo zajścia pojedynczego zdarzenia jest umiarkowane, a twierdzenie Poissona opisuje sytuacje, w których prawdopodobieństwo zajścia pojedynczego zdarzenia jest małe. Dobrym przykładem sytuacji, w której warto stosować twierdzenie Poissona do oszacowań, jest prawdopodobieństwo wygrania dużej kwoty na loterii.
Bibliografia
- Jacek Jakubowski, Rafał Sztencel: Wstęp do teorii prawdopodobieństwa. Warszawa: Script, 2004. ISBN 83-89716-01-1.