Aksjomat Archimedesa

Aksjomat Archimedesaaksjomat geometrii głoszący, że każdy odcinek jest krótszy od pewnej wielokrotności długości każdego innego odcinka[1]. Z niego wynika nieograniczoność prostej. Został on wbrew nazwie sformułowany po raz pierwszy przez Eudoksosa, a nazwany w ten sposób przez Ottona Stolza w 1883. Geometrie niespełniające go zwane są niearchimedesowymi.

Dawid Hilbert, w aksjomatyzacji geometrii euklidesowej korzystał z aksjomatu Archimedesa, z tym że uzupełniał go aksjomatem kompletności (maksymalności) linii prostej, który wystąpił jako ostatni i mówił, że linia prosta jest maksymalnym zbiorem spełniającym wszystkie poprzednie aksjomaty.

Aksjomat Archimedesa ma odpowiednik w arytmetyce: Dla każdej pary dodatnich liczb rzeczywistych i istnieje taka liczba naturalna że [2].

W teorii ciał uporządkowanych spełnianie aksjomatu Archimedesa charakteryzuje ciała izomorficzne z podciałami ciała liczb rzeczywistych. Innymi słowy: jeśli ciało uporządkowane nie jest izomorficzne z podciałem ciała liczb rzeczywistych, to ma elementy większe od wszystkich liczb naturalnych. Takie elementy nazywamy nieskończenie wielkimi.

Zobacz też

Przypisy

Bibliografia

  • Piotr Kosowicz: Słownik Matematyka. Kraków: GREG, 2018. ISBN 978-83-7327-578-2. (pol.).

Linki zewnętrzne

  • publikacja w otwartym dostępie – możesz ją przeczytać Archimedean axiom (ang.), Encyclopedia of Mathematics, encyclopediaofmath.org [dostęp 2025-04-23].